EPIMETHEUS FPGA/CPLD
Specification

T

HPSDR

Preparred by Steven Wilson, KA6S
Project Leader: Philip Harman, VK6APH

1 EPIMETHEUS FPGA/CPLD Specification

This document describes the Verilog code which is the core of the Epimetheus (EPT) CPLD
functionality. The board block diagram is shown below:

Epimetheus (Epi) — Block Diagram

EFROMS
Bt Serial #
412 S Regulator I—Gv——p
—+ S Z.3v Regulator p—— 3 -

Coolusrmin 1

ol 2

Ronar 1

Roner 2

Roner 3

e <

Rchar S5

Rionss G

—————Clock———————-

Ronar T

Roner 8

O RAH = Colamn 3
Crosspoint
Swwitch

b
N
HOHOHOHOHOOHOHOHOHOND

Tl <4

.l

Relays

> Frelay I 8 x DPDT

Drivers Relays

EPM24OTOFPI00

CRPLD

Atiag Bus

Imput

protection
o
=T opto isclation

8 x digital
Inputs

ETIRNY

8 » Open
Collector
Crutputs.

DIN1812 Comnector

N

I L]
12c
Address
Select

Epi Wi1.0 27 Septaember 2006

EPIMETHEUS Block Diagram

2 Functional Description

The main mission of the Epi CPLD is to provide programmed Outputs for the various facilities on EPI
and to be capable of sending a message to the host processor on Ozy whenever a state change occurs on
the 'receive_in” pins (like a button push).

The 12C bus is used both as the programming path AND the message path. There are two 12C ports on
the device primarily to simplify internal tristate control. These should be tied together on a single 12C
bus on the EPI board.

The Verilog code for Epimetheus implements an 12C slave which translates 12C activity into Wishbone
bus cycles. These Wishbone transactions can target one of three slaves, the [2C Master (from
OpenCores), the “Epi_ctl regs” module, and the “Status mcode” module. The “Status_ctl” module
serves as another Wishbone master which causes messages over the I2C master every time a signal
changes state on the “receive_in” lines. The “Wb_arb_mux” module serves as an arbiter between the
two Wishbone bus masters and feeds the data bus to/from each of the three I12C slaves.

TA block Diagram of the EPIMETHEUS code is illustrated below:

slv_sda

HPSDR Sgﬁs
I2C Slave

stv scl =

mstr_sda

Status

Epi Ctl Regs mcode

OpenCores
mstr_scl [2C Master

oc_out
relay out
cross_point
receive _in

Epi Verilog Code Block Diagram

This document covers all of the modules colored in Blue. The “OpenCores 12C Master” has it's own
documentation that can be found on the “www.opencores.org” web page.

2.1 EPI Module description

This module is the top level and incorporates several sub-modules which implement the CPLD
functionality. The table below illustrates the module I/Os.

Signal Name Width Direction Description
reset n 1 In Reset (Active low)
CLK 1 In Clock input — should be 30-40Mhz
slv_sda 1 In/Out 12C Slave Serial Data
slv_scl 1 In 12C Slave Serial Clock
mstr_sda 1 In/Out [2CMaster Serial Data
mstr_scl 1 In/Out 12C Master Serial Clock
cross_point ctl 48 Out Cross Point Control
relay_out 8 Out Relay Control
receive_in 8 In Received Inputs
oc_out 8 Out Open Collector Out

2.2 OpenCores I12C Master

The OpenCores [2C master is a wishbone slave that is employed within this design to send messages to
the system host (Ozy) when any bit within “receive in” changes state. The initial conditions are set up
by the I2C slave from Ozy, then the microcode inside “Status _mcode” that drives “Status_ctl” will
send a copy of the “receive in” bus anytime a bit changes state.

The table below illustrates the module I/O — please see the OpenCores 12C Master document for further
design details.

Signal Name Width Direction Description
wb clk i 1 In Wishbone Clock
wb st i 1 In Wishbone Reset
arst 1 1 In Asynchronouse reset
wb_adr i 3 In Wishbone Address
wb dat i 8 In Wishbone Data In
wb dat o 8 Out Wishbone Data Out

http://www.opencores.org/
http://www.opencores.org/
http://www.opencores.org/

wb we i 1 In Wishbone Write

wb_stb i 1 In Wishbone Strobe/Select

wb_cyc i 1 In Wishbone Cycle

wb _ack o 1 Out Wishbone Ack

wb_inta o 1 Out Wishbone Interrupt Out

scl pad i 1 In 12C Clock In

scl pad o 1 Out 12C Clock Out

scl padoen o 1 Out 12C Clock Pad Out Enable (active low)
sda_pad i 1 In 12C Data In

sda pad o 1 Out 12C Data Out

sda_padoen o 1 Out 12C Data Pad Out Enable (active low)

Please see the register description section for register bit definitions.

The define ADDRESS sets the 12C Slave address.

2.3 12C_SLAVE (HPSDR)

This module implements an 12C slave which translates I2C transactions into Wishbone operations.

The module receives it's I2C address from the top level module (the address which it responds on the
12C too). It is assumed that the 12C signals are de-glitched and that SDA occurs AFTER SCL to allow
the STOP & START states to be determined reliably.

Signal Name Width Direction Description
rst n 1 In reset (active low)
clk 1 In Clock
my_addr 7 In 12C Slave Address
adr o 8 Out Wishbone Address
dat 1 8 In Wishbone Data In
dat o 8 Out Wishbone Data Out
we o 1 Out Wishbone Write
stb o 1 Out Wishbone Strobe
sel o 1 Out Wishbone Select (redundant with strobe)
Ccyc_o 1 Out Wishbone Cycle
ack i 1 In Wishbone Ack
debug 12 Out Debug bus (not required)

scl in 1 In 12C Clock In
sda_in 1 In 12C Data In
sda_out 1 Out 12C Data Out
sda oe 1 Out 12C Data Pad Out Enable (active high)
my_addr » COMP
A
—» adro » adr o
sda_in > L
_ rcv re » dat o
scl_in » CVTEO dat_o —
- ack i
Start rcv_cntr
| Cyc_sm We_O
Yo sel o
Sto
Y ~ 12C_SM stb_ o
CyC_O
sda_out< | 8:1 mux < | data_out dat_|

The “START” detector detects the transition of SDA from high to low while the clock is high.

12C SLAVE Block Diagram

The “STOP” detector sets when the transition of SDA from low to high occurs while the clock is high.

The “RCV_REG?” shifts in the received data when the SCL transitions from low to high. This allows it

to capture the data transmitted over the I2C bus.

The “RCV_CNTR” counts the number of bits that have been shifted into “RCV_REG.”

The “COMP” function watches the received data, and when the [2C_SM is in the SM_ADDR state and
the data compares to the “my_addr” bus, it indicates an that device has been selected.

The “Data_out” module captures the data from the Wishbone dat i bus and stores it to be sent out over
the I2C SDA_OUT signal through the “8:1 Mux.”

The [2C_SM follows the state diagram below:

stop | reset

l

cnt8 & laddr_dec |
cnt8 & addr_dec &
nack

cnt8 & addr_dec
& write & ack

cnt8 & addr_dec
& lwrite & ack

12C SM State Diagram

The state machine goes asynchronously to IDLE when STOP occurs. This is how it exits the READ,
WAIT, and WRITE states nominally during burst operations.

The function of the state machine is to interpret multiple I2C sequences, separating them into Address
phase which selects the target [2C device followed by either Write or Read phases.

: a
sy | 12C ® | wishbone - Wishbone | 2
at | Addr+RW € Address Write C | =P
Kk K k
Data
IDLE ADDR WRITE WRITE IDLE
12C State Machine Sequence to Write Data to the Wisbhone bus
. a :
£ 12C i Wishbone c & 12C 2 Wishbone 2 a
& Addr+RW . Address | & Addr+RW | Read Data 7
IDLE ADDR WRITE ADDR READ

12C State Machine Sequence to Read Data via the Wishbone bus

The “CYC_SM” is used to cause read and write transactions on the Wishbone bus. The CYC SM

interprets the different points within the 12C sequences and takes appropriate action to move data to or

from the I12Cresources across the Wishbone bus.

start

stop | rst_n

CYC SM State Machine

Note that ALL of the signal state points mentioned above are synchronized copies of the state signals
that exist in the 12C clock domain space. This is necessary to remove any problems with metastability.

) da . a
12C @ ' Wishbone Wishbone
Start | Addr+RW € Address | ° Write C | Stop
k k k
Data
<

Y = =
= - R =

CYC _SM state sequence following the I2C Write Transfer

£ 12C 2 Wishbone 2 £ 12C i Wishbone i o

» AJr+RW ° Address || & Addr+RW | Read Data . 3
<

y g - : B - ;

5 3 2 2 2 2 e

CYC _SM State sequence following the 12C Read Transfer

The “ADR_O” register captures data upon the state machine moving from ADDR to WDATA.
“ADR_0O” will increment on succeeding occurrences of ACK while in the WDATA state or RDATA
state. This supports burst operations for both read and write sequences.

"The “DAT_O” register captures data upon the state machine moving when the state machine is in the
WDATA state and ACK occurs.

Wishbone cycles occur when in the WDATA state and ACK occurs, in the RDATA state and the
transfer count = 8, or during the WTO period to allow pre-fetch of read data.

2.4 EPI_CONTROL_REGS Module

The Epi Control Regs module implements two basic functions. These are the Read/Write path to the
programmable I/O pins and the detection of state change on the “received in” pins. The module is a
Wishbone slave and is nominally only accessible from the I2C Slave master.

Signal Name Width Direction Description
rst n 1 In reset (active low)
clk 1 In Clock
addr o 8 Out Wishbone Address
dat i1 8 In Wishbone Data In
dat o 8 Out Wishbone Data Out
we 1 1 Out Wishbone Write
sel i 1 Out Wishbone Select (redundant with strobe)
cyc i 1 Out Wishbone Cycle
ack o 1 In Wishbone Ack
go ahead 1 Out Start status_ctl SM — a single clock pulse
cross_point_ctl 48 Out Cross Point programmable control

relay out 8 Out Relay programmable control
oc_out 8 Out Open Collector programmable Control
stat_in 8 Out Masked received_in
receive in 8 In Received external bus
Write Addressable registers
Address Reg Name Description
8'h40 MASK Masks the received in bus when bit is 0.
8'h41 RELAY Controls “relay_out[7:0]”
8'h42 OC OUT Controls “oc_out[7:0]”
8'h43 CPO Controls “cross_point_out[7:0]”
8'h44 CP1 Controls “cross_point _out[15:8]”
8'h45 CP2 Controls “cross_point_out[23:16]”
8'h46 CP3 Controls “cross_point_out[31:24]”
8'h47 CP4 Controls “cross_point_out[39:32]”
8'h48 CP5 Controls “cross_point_out[47:40]”

Note all read accesses receive the STAT IN bus which is a time delayed version of the XOR output.

: dat o
Stat_ln — Stat:in
last_rcv_in
XOR | go_ahead
receive_in » AND o
dat_i mask
|
addr_| relay — relay out
sell L Addr
cye Dec oc out - oc out
we | -
] cp0
o cross_point_out
o
®
cpdS

ack o

EPI CTL REGS block diagram

There are 9 separate registers that can be written too, while a read to any address returns the
“STAT _IN” bus.

The “receive_in” bus is ANDed with the value in the “MASK” register and delayed by one clock. The

result of the masked value is compared to the delayed value to detect a change in state. Any change in
state will cause the “go_ahead” pulse to occur.

2.5 STATUS_MCODE

This module implements a byte addressable 16X8 memory array that is attached as a Wishbone slave to
the internal Wishbone bus. Bank 0 receives even addresses, while Bank1 receives odd addreses. A
second read port feeds the Microcode word over to the “STATUS CTL” module.

Width Direction

Signal Name

Description

rst n 1 In reset (active low)

clk 1 In Clock

addr i 8 Out Wishbone Address

dat 1 8 In Wishbone Data In

dat o 8 Out Wishbone Data Out

we i 1 Out Wishbone Write

sel i | Out Wishbone Select (redundant with strobe)

cyc i 1 Out Wishbone Cycle

ack o 1 In Wishbone Ack

mc_addr 3 In Microcode Address

mc_word 16 Out Microcode Data Word

Read/Write address descripton

Address Reg Name Description

8'h00 BankO byte 0 Microcode Word 0 — lower byte
8'h01 Bankl byte 0 Microcode Word 0 — upper byte
8'h02 Bank0 byte 1 Microcode Word 1 — lower byte
8'h03 BankI byte 1 Microcode Word 1 — upper byte
8'h04 BankO byte 2 Microcode Word 2 — lower byte
8'h05 Bankl1 byte 2 Microcode Word 2 — upper byte
8'h06 BankO byte 3 Microcode Word 3 — lower byte
8'h07 Bankl byte 3 Microcode Word 3 — upper byte
8'h08 BankO byte 4 Microcode Word 4 — lower byte
8'h09 Bankl byte 4 Microcode Word 4 — upper byte
8'h0A BankO byte 5 Microcode Word 5 — lower byte
8'h0B Bank1 byte 5 Microcode Word 5 — upper byte
8'h0C BankO byte 6 Microcode Word 6 — lower byte
8'h0D Bank1 byte 6 Microcode Word 6 — upper byte
8'hOE BankO byte 7 Microcode Word 7 — lower byte
8'hOF Bank1 byte 7 Microcode Word 7 — upper byte

mc_addr[2:0]

laddr _i[0]— \—> mc_word[7:0]
~ ». BANKO
addr_i[3:1] N
dat_i[7:0] 0
sel i B dat o

cyc i 1
we_l Jaddr_i[O]
- = BANKI1

addr_i[0] — P S mc_word[15:8]

mc_addr[2:0]

sel i
cyc i

ACK > ack o

STATUS Microcode store block diagram

The Wishbone bus organizes the memory into two banks, each 8 bits wide that take on even an odd
addresses respectively on the Wishbone bus. The second read path is addressed by mc_addr[2:0] and
supplies the “mc_word” bus.

2.6 STATUS_CTL

The “STATUS_CTL” module is serves as a Wishbone master which causes [12C messages to be sent
via the [12C Master module. The “STATUS CTL” receives it's micro-coded instructions from the
“STATUS MCODE” module via the “mc_word” bus and interprets them as to the action it's to take.

Signal Name Width Direction Description
rst n 1 In reset (active low)
clk 1 In Clock
addr o 8 Out Wishbone Address
dat i1 8 In Wishbone Data In
dat o 8 Out Wishbone Data Out
we o 1 Out Wishbone Write
sel o 1 Out Wishbone Select (redundant with strobe)
cyc o 1 Out Wishbone Cycle
ack i 1 In Wishbone Ack
mc_addr 3 Out Microcode Address
mc_word 16 In Microcode Data Word
go ahead 1 In Start interpreting the Microcode
stat_in 8 In Synchronized version of masked “received in” bus

The module receives “mc_word” which controls the operation of the module. The table below defines
how the state machine decodes the micro-control word.

Signal Name Function

mc_word[7:0] Data Out/Comparison word

mc_word[10:8] Address to [2C Master

mc_ word[11] Source Select 0 = mc_word[7:0] 1=status_in
mc_word[14:13] 00 — Wishbone Write Operation

01 — Wishbone Read and Compare/Loop
10 = Wait till Interrupt
11 — Undefined

mc_word[15] Stop execution after transaction

This section provides a block diagram of the STAT CTL module:

mc_word[7:0] Me-word15:8]

stat_in
—» AND
Y
clr_mcadr
N ot moat
> Stat SM incr_mcadl mc¢_addr
neq >
run_cyc i
mc_addr
Wishbone
Gen
\/ \J i T
dat_ o we_O0 cyc_o ack i
stb o

STAT CTL Block Diagram

Y/

N run_cyc

lwait_till_int/
run_cyc

STAT CTL State Machine

go_ahead/
run_cyc

/clr_mcadr

2.7 WB_ARB_MUX

This module provides arbitration services for the Wishbone masters and muxes the address bus and
data_out buses.

Signal Name Width Direction Description

wb clk i 1 In Clock

wb_rst i 1 In reset (active low)

adr 0 1 8 In Wishbone Master 0 Address
dat 0 i 8 In Wishbone Master 0 Data In
dat 0 o 8 Out Wishbone Master 0 Data Out
we 0 o 1 Out Wishbone Master 0 Write

sel 0 i 1 In Wishbone Master 0 Select (redundant with strobe)
stb 0 i 1 In Wishbone Master 0 Strobe
ack 0 o 1 Out Wisbhone Master 0 Ack

cyc 01 1 In Wishbone Master 0 Cycle
adr 1 1 8 In Wishbone Master 1 Address
dat 1 i 8 In Wishbone Master 1 Data In
dat 1 o 8 Out Wishbone Master 1 Data Out
we |1 o 1 Out Wishbone Master 1 Write
sel 11 1 In Wishbone Master 1 Select (redundant with strobe)
stb 1 1 1 In Wishbone Master 1 Strobe
ack 1 o 1 Out Wisbhone Master 1 Ack

cyc 11 1 In Wishbone Master 1 Cycle
adr o 8 Out Wishbone Address muxed
dat o 8 Out Wishbone Data out (muxed)
dat i1 8 In Wishbone Data In (muxed)
we o 1 Out Wishbone write (muxed)

sel o 1 Out Wisbhone Select (muxed)
stb o 1 Out Wishbone Strobe (muxed)
cyc o 1 Out Wishbone Cycle (muxed)
ack 1 1 In Wishbone Ack (muxed)

cyc 0 i P
—
ARB_SM
cyc_1 i B >
adr 0 i
dat O i
we 0 i —P>
sto 0 i adr_ o
cyc 0 dat o
sel 0 i iy
U . we_o
adr_1_i stb_o
dat 1_i cycl:_o
we_1 i | sel_o
stb 1
cyc 1 i
sel 1 i

dat i

WB_ARB_SM Block Diagram

- dat0o

ack 0 o

ack 1 o

> dat 1 o

3 Microcode Control

This section discusses how the microcode control is used. The basic idea is that a programmed
response is required, consequently an agent that can interact with 12C Master over the wishbone bus is
required. The micro-word is organized to be able to control reading/writing of the bus, and has the
ability to write literals to selected addresses, write the current received data bus, and to loop on a
masked status.

The micro-code is organized as illustrated below:

Signal Name Function

mc_word[7:0] Data Out/Comparison word

mc_word[10:8] Address to 12C Master

mc_word[11] Source Select 0 = mc_word[7:0] 1=status_in
mc_word[14:13] 00 — Wishbone Write Operation

01 — Wishbone Read and Compare/Loop

10 = Wait till Interrupt
11 — Undefined

mc_word[15] Stop execution after transaction

The easiest way to illustrate it's use is to give an example:

This is the microcode loaded in the basic test bench. It achieves the sending of the status word to the
12C slave addressed at 0x30. Note that bit 12 in the control word isn't currently defined.

wr_single(SADRI1, 8'h00,8'h30); // Load the Slave address into bits 7-0
wr_single(SADRI, 8'h01,{MCRUN,MCWRT,MCWORD,TXR});

Microword 0 =16'b1_00 X 0 011 00110000

// This operation starts the first transmission of the Address phase of the I12C protocol
wr_single(SADRI, 8'h02, STA | WRB); // Set the Start bit and Write Bit in the CTL Reg
wr_single(SADRI, 8'h03, {MCRUN,MCWRT,MCWORD,CR}); // Write to Ctl Reg -

Microword 1 =16'b1_00 X 0 100 10010000

/ This has the affect of continually reading the status register until the ANDed condition is true,

/I 1.e. Bit 1 set in this case.

wr_single(SADRI, 8'h04, 8'h02); // Mask for bit 1 of the Status word

wr_single(SADRI1, 8'h05, {MCRUN,MCRDC,MCWORD,SR}); // Continually read SR until mask true

Microword 2 = 16'b1_01_X_0_100_00000010

// Load the received_in bus into the I12C Master XMIT register
wr_single(SADRI1, 8'h06, 8'h0); // Uses STAT IN — so noop
wr_single(SADRI1, 8'h07,{MCRUN,MCWRT,STAT IN,TXR}); // Selects STAT IN

Microword 3 = 16'b1 00 X_1 011 00000000

/I Send the status word - and set the stop bit when done.
wr_single(SADRI1, 8'h08, STO | WRB); // Set the STOP bit and Write Bit (last operation)
wr_single(SADRI1, 8'h09, {MCRUN,MCWRT,MCWORD,CR});

Microword 3 = 16'b1_00 X_0 100 01010000

// 'This next sequence is the last in the Microcode sequence -

// The status word is polled until bit one sets. Since MCSTOP is selected, the SM will stop

// upon completion of this step.

wr_single(SADRI, 8'h0A, 8'h02); / Mask for bit 1

wr_single(SADRI1, 8'h0B, {MCSTOP,MCRDC,MCWORD,SR}); // Stop operation upon completion.

Microword 3 = 16'60_01_X_0 100 00000010

	1EPIMETHEUS FPGA/CPLD Specification
	2Functional Description
	2.1EPI Module description
	2.2OpenCores I2C Master
	2.3I2C_SLAVE (HPSDR)
	2.4EPI_CONTROL_REGS Module
	2.5STATUS_MCODE
	2.6STATUS_CTL
	2.7WB_ARB_MUX

	3Microcode Control

