
EPIMETHEUS FPGA/CPLD
Specification

Preparred by Steven Wilson, KA6S
Project Leader: Philip Harman, VK6APH

1 EPIMETHEUS FPGA/CPLD Specification

This document describes the Verilog code which is the core of the Epimetheus (EPI) CPLD
functionality. The board block diagram is shown below:

EPIMETHEUS Block Diagram

2 Functional Description
The main mission of the Epi CPLD is to provide programmed Outputs for the various facilities on EPI
and to be capable of sending a message to the host processor on Ozy whenever a state change occurs on
the 'receive_in” pins (like a button push).

The I2C bus is used both as the programming path AND the message path. There are two I2C ports on
the device primarily to simplify internal tristate control. These should be tied together on a single I2C
bus on the EPI board.

The Verilog code for Epimetheus implements an I2C slave which translates I2C activity into Wishbone
bus cycles. These Wishbone transactions can target one of three slaves, the I2C Master (from
OpenCores), the “Epi_ctl_regs” module, and the “Status_mcode” module. The “Status_ctl” module
serves as another Wishbone master which causes messages over the I2C master every time a signal
changes state on the “receive_in” lines. The “Wb_arb_mux” module serves as an arbiter between the
two Wishbone bus masters and feeds the data bus to/from each of the three I2C slaves.

A block Diagram of the EPIMETHEUS code is illustrated below:

Epi Verilog Code Block Diagram

HPSDR
I2C Slave

Deglitch

Deglitch

OpenCores
I2C Master

Deglitch

Deglitch

Status
mcode

Status
Ctl

Wb Arb
Mux

Epi Ctl Regs

Wishbone

re
ce

ive
_i

n

cr
os

s_
po

int

re
lay

_o
ut

oc
_o

ut

slv_sda

slv_scl

mstr_sda

mstr_scl

This document covers all of the modules colored in Blue. The “OpenCores I2C Master” has it's own
documentation that can be found on the “www.opencores.org” web page.

2.1 EPI Module description

This module is the top level and incorporates several sub-modules which implement the CPLD
functionality. The table below illustrates the module I/Os.

Signal Name Width Direction Description
reset_n 1 In Reset (Active low)
CLK 1 In Clock input – should be 30-40Mhz
slv_sda 1 In/Out I2C Slave Serial Data
slv_scl 1 In I2C Slave Serial Clock
mstr_sda 1 In/Out I2CMaster Serial Data
mstr_scl 1 In/Out I2C Master Serial Clock
cross_point_ctl 48 Out Cross Point Control
relay_out 8 Out Relay Control
receive_in 8 In Received Inputs

oc_out 8 Out Open Collector Out

2.2 OpenCores I2C Master
The OpenCores I2C master is a wishbone slave that is employed within this design to send messages to
the system host (Ozy) when any bit within “receive_in” changes state. The initial conditions are set up
by the I2C slave from Ozy, then the microcode inside “Status_mcode” that drives “Status_ctl” will
send a copy of the “receive_in” bus anytime a bit changes state.

The table below illustrates the module I/O – please see the OpenCores I2C Master document for further
design details.

Signal Name Width Direction Description
wb_clk_i 1 In Wishbone Clock
wb_rst_i 1 In Wishbone Reset
arst_i 1 In Asynchronouse reset
wb_adr_i 3 In Wishbone Address
wb_dat_i 8 In Wishbone Data In
wb_dat_o 8 Out Wishbone Data Out

http://www.opencores.org/
http://www.opencores.org/
http://www.opencores.org/

wb_we_i 1 In Wishbone Write
wb_stb_i 1 In Wishbone Strobe/Select
wb_cyc_i 1 In Wishbone Cycle

wb_ack_o 1 Out Wishbone Ack
wb_inta_o 1 Out Wishbone Interrupt Out
scl_pad_i 1 In I2C Clock In
scl_pad_o 1 Out I2C Clock Out
scl_padoen_o 1 Out I2C Clock Pad Out Enable (active low)
sda_pad_i 1 In I2C Data In
sda_pad_o 1 Out I2C Data Out
sda_padoen_o 1 Out I2C Data Pad Out Enable (active low)

Please see the register description section for register bit definitions.

The define ADDRESS sets the I2C Slave address.

2.3 I2C_SLAVE (HPSDR)
This module implements an I2C slave which translates I2C transactions into Wishbone operations.

The module receives it's I2C address from the top level module (the address which it responds on the
I2C too). It is assumed that the I2C signals are de-glitched and that SDA occurs AFTER SCL to allow
the STOP & START states to be determined reliably.

Signal Name Width Direction Description
rst_n 1 In reset (active low)
clk 1 In Clock
my_addr 7 In I2C Slave Address
adr_o 8 Out Wishbone Address
dat_i 8 In Wishbone Data In
dat_o 8 Out Wishbone Data Out
we_o 1 Out Wishbone Write
stb_o 1 Out Wishbone Strobe
sel_o 1 Out Wishbone Select (redundant with strobe)
cyc_o 1 Out Wishbone Cycle

ack_i 1 In Wishbone Ack
debug 12 Out Debug bus (not required)

scl_in 1 In I2C Clock In
sda_in 1 In I2C Data In
sda_out 1 Out I2C Data Out
sda_oe 1 Out I2C Data Pad Out Enable (active high)

I2C_SLAVE Block Diagram

The “START” detector detects the transition of SDA from high to low while the clock is high.

The “STOP” detector sets when the transition of SDA from low to high occurs while the clock is high.

The “RCV_REG” shifts in the received data when the SCL transitions from low to high. This allows it
to capture the data transmitted over the I2C bus.

The “RCV_CNTR” counts the number of bits that have been shifted into “RCV_REG.”

Start

Stop

rcv_cntr

rcv_regsda_in
scl_in

COMPmy_addr

I2C_SM

Cyc_sm

data_out dat_i8:1 muxsda_out

we_o
sel_o
stb_o
cyc_o

ack_i

adr_o adr_o

dat_o dat_o

The “COMP” function watches the received data, and when the I2C_SM is in the SM_ADDR state and
the data compares to the “my_addr” bus, it indicates an that device has been selected.

The “Data_out” module captures the data from the Wishbone dat_i bus and stores it to be sent out over
the I2C SDA_OUT signal through the “8:1 Mux.”

The I2C_SM follows the state diagram below:

I2C SM State Diagram
The state machine goes asynchronously to IDLE when STOP occurs. This is how it exits the READ,
WAIT, and WRITE states nominally during burst operations.

IDLE

ADDR

start cnt8 & !addr_dec |
cnt8 & addr_dec &
nack

READ WRITE

cnt8 & addr_dec
& write & ack

cnt8 & addr_dec
& !write & ack

start

WAIT

start

cnt8 & nack

stop | reset

The function of the state machine is to interpret multiple I2C sequences, separating them into Address
phase which selects the target I2C device followed by either Write or Read phases.

I2C State Machine Sequence to Write Data to the Wisbhone bus

I2C State Machine Sequence to Read Data via the Wishbone bus

The “CYC_SM” is used to cause read and write transactions on the Wishbone bus. The CYC_SM
interprets the different points within the I2C sequences and takes appropriate action to move data to or
from the I2Cresources across the Wishbone bus.

I2C
Addr+RW

a
c
k

Wishbone
Address

a
c
k

Wishbone
Write
Data

a
c
k

Start Stop

ADDR WRITEIDLE WRITE IDLE

I2C
Addr+RW

a
c
k

Wishbone
Address

a
c
kSt

ar
t

ADDR WRITEIDLE

I2C
Addr+RW

a
c
kSt

ar
t

ADDR

Wishbone
Read Data

a
c
k St

op

READ

CYC_SM State Machine
Note that ALL of the signal state points mentioned above are synchronized copies of the state signals
that exist in the I2C clock domain space. This is necessary to remove any problems with metastability.

CYC_SM state sequence following the I2C Write Transfer

I2C
Addr+RW

a
c
k

Wishbone
Address

a
c
k

Wishbone
Write
Data

a
c
k

Start Stop

ID
LE

W
T0

AD
D

R

W
D

AT
A

M
VD

T

IDLE

WT0

start

ADDR

ack & target &
write

RDATA

ack & target & !
write

start

WDATA

ack & write

ack & !write

start

MVDT

clk clk

start

stop

stop | rst_n

CYC_SM State sequence following the I2C Read Transfer
The “ADR_O” register captures data upon the state machine moving from ADDR to WDATA.
“ADR_O” will increment on succeeding occurrences of ACK while in the WDATA state or RDATA
state. This supports burst operations for both read and write sequences.

'The “DAT_O” register captures data upon the state machine moving when the state machine is in the
WDATA state and ACK occurs.

Wishbone cycles occur when in the WDATA state and ACK occurs, in the RDATA state and the
transfer count = 8, or during the WT0 period to allow pre-fetch of read data.

2.4 EPI_CONTROL_REGS Module
The Epi Control Regs module implements two basic functions. These are the Read/Write path to the
programmable I/O pins and the detection of state change on the “received_in” pins. The module is a
Wishbone slave and is nominally only accessible from the I2C Slave master.

Signal Name Width Direction Description
rst_n 1 In reset (active low)
clk 1 In Clock
addr_o 8 Out Wishbone Address
dat_i 8 In Wishbone Data In
dat_o 8 Out Wishbone Data Out
we_i 1 Out Wishbone Write
sel_i 1 Out Wishbone Select (redundant with strobe)
cyc_i 1 Out Wishbone Cycle

ack_o 1 In Wishbone Ack
go_ahead 1 Out Start status_ctl SM – a single clock pulse
cross_point_ctl 48 Out Cross Point programmable control

I2C
Addr+RW

a
c
k

Wishbone
Address

a
c
kSt

ar
t I2C

Addr+RW

a
c
kSt

ar
t Wishbone

Read Data

a
c
k St

op

ID
LE

W
T0

AD
D

R

R
D

AT
A

AD
D

R

R
D

AT
A

ID
LE

relay_out 8 Out Relay programmable control
oc_out 8 Out Open Collector programmable Control
stat_in 8 Out Masked received_in
receive_in 8 In Received external bus

Write Addressable registers

Address Reg Name Description
8'h40 MASK Masks the received_in bus when bit is 0.
8'h41 RELAY Controls “relay_out[7:0]”
8'h42 OC_OUT Controls “oc_out[7:0]”
8'h43 CP0 Controls “cross_point_out[7:0]”
8'h44 CP1 Controls “cross_point_out[15:8]”
8'h45 CP2 Controls “cross_point_out[23:16]”
8'h46 CP3 Controls “cross_point_out[31:24]”
8'h47 CP4 Controls “cross_point_out[39:32]”

8'h48 CP5 Controls “cross_point_out[47:40]”

Note all read accesses receive the STAT_IN bus which is a time delayed version of the XOR output.

EPI_CTL_REGS block diagram
There are 9 separate registers that can be written too, while a read to any address returns the
“STAT_IN” bus.

The “receive_in” bus is ANDed with the value in the “MASK” register and delayed by one clock. The
result of the masked value is compared to the delayed value to detect a change in state. Any change in
state will cause the “go_ahead” pulse to occur.

Addr
Dec

addr_i
sel_i
cyc_i
we_i

rcv_maskmask

relay

oc_out

cp0

cp5

XOR
last_rcv_in

ANDreceive_in

go_ahead

stat_in stat_in

receive_in

dat_i

relay_out

oc_out

cross_point_out

dat_o

ack_o

2.5 STATUS_MCODE
This module implements a byte addressable 16X8 memory array that is attached as a Wishbone slave to
the internal Wishbone bus. Bank 0 receives even addresses, while Bank1 receives odd addreses. A
second read port feeds the Microcode word over to the “STATUS_CTL” module.

Signal Name Width Direction Description
rst_n 1 In reset (active low)
clk 1 In Clock
addr_i 8 Out Wishbone Address
dat_i 8 In Wishbone Data In
dat_o 8 Out Wishbone Data Out
we_i 1 Out Wishbone Write
sel_i 1 Out Wishbone Select (redundant with strobe)
cyc_i 1 Out Wishbone Cycle

ack_o 1 In Wishbone Ack
mc_addr 3 In Microcode Address
mc_word 16 Out Microcode Data Word

Read/Write address descripton

Address Reg Name Description
8'h00 Bank0 byte 0 Microcode Word 0 – lower byte
8'h01 Bank1 byte 0 Microcode Word 0 – upper byte
8'h02 Bank0 byte 1 Microcode Word 1 – lower byte
8'h03 Bank1 byte 1 Microcode Word 1 – upper byte
8'h04 Bank0 byte 2 Microcode Word 2 – lower byte
8'h05 Bank1 byte 2 Microcode Word 2 – upper byte
8'h06 Bank0 byte 3 Microcode Word 3 – lower byte
8'h07 Bank1 byte 3 Microcode Word 3 – upper byte

8'h08 Bank0 byte 4 Microcode Word 4 – lower byte

8'h09 Bank1 byte 4 Microcode Word 4 – upper byte

8'h0A Bank0 byte 5 Microcode Word 5 – lower byte

8'h0B Bank1 byte 5 Microcode Word 5 – upper byte

8'h0C Bank0 byte 6 Microcode Word 6 – lower byte

8'h0D Bank1 byte 6 Microcode Word 6 – upper byte

8'h0E Bank0 byte 7 Microcode Word 7 – lower byte

8'h0F Bank1 byte 7 Microcode Word 7 – upper byte

STATUS Microcode store block diagram

The Wishbone bus organizes the memory into two banks, each 8 bits wide that take on even an odd
addresses respectively on the Wishbone bus. The second read path is addressed by mc_addr[2:0] and
supplies the “mc_word” bus.

BANK0

BANK1
addr_i[0]
1

0
dat_o

mc_word[7:0]

mc_word[15:8]addr_i[0]

!addr_i[0]

addr_i[3:1]
dat_i[7:0]
sel_i
cyc_i
we_i

ACK
sel_i
cyc_i ack_o

mc_addr[2:0]

mc_addr[2:0]

2.6 STATUS_CTL
The “STATUS_CTL” module is serves as a Wishbone master which causes I2C messages to be sent
via the I2C Master module. The “STATUS_CTL” receives it's micro-coded instructions from the
“STATUS_MCODE” module via the “mc_word” bus and interprets them as to the action it's to take.

Signal Name Width Direction Description
rst_n 1 In reset (active low)
clk 1 In Clock
addr_o 8 Out Wishbone Address
dat_i 8 In Wishbone Data In
dat_o 8 Out Wishbone Data Out
we_o 1 Out Wishbone Write
sel_o 1 Out Wishbone Select (redundant with strobe)
cyc_o 1 Out Wishbone Cycle

ack_i 1 In Wishbone Ack
mc_addr 3 Out Microcode Address
mc_word 16 In Microcode Data Word
go_ahead 1 In Start interpreting the Microcode
stat_in 8 In Synchronized version of masked “received_in” bus

The module receives “mc_word” which controls the operation of the module. The table below defines
how the state machine decodes the micro-control word.

Signal Name Function
mc_word[7:0] Data Out/Comparison word
mc_word[10:8] Address to I2C Master
mc_word[11] Source Select 0 = mc_word[7:0] 1=status_in
mc_word[14:13] 00 – Wishbone Write Operation

01 – Wishbone Read and Compare/Loop
10 = Wait till Interrupt
11 – Undefined

mc_word[15] Stop execution after transaction

This section provides a block diagram of the STAT_CTL module:

STAT_CTL Block Diagram

Stat_SM

mc_word[15:8]

mc_addr

clr_mcadr

incr_mcadr

mc_addr

Wishbone
Gen

run_cyc

cyc_o
stb_o

we_o ack_i

mc_word[7:0]

stat_in

dat_o

AND

neq

STAT_CTL State Machine

IDLE

RUN0

!ack

loop & neq &
!we0

stop

RUN1

WAIT

int Y/
run_cyc Y

Y

N

N

N

Y

N

go_ahead/
run_cycwait_till_int

!wait_till_int/
run_cyc

/run_cyc

/clr_mcadr

/in
cr

_m
ca

dr
/run_cyc

2.7 WB_ARB_MUX
This module provides arbitration services for the Wishbone masters and muxes the address bus and
data_out buses.

Signal Name Width Direction Description
wb_clk_i 1 In Clock
wb_rst_i 1 In reset (active low)
adr_0_i 8 In Wishbone Master 0 Address
dat_0_i 8 In Wishbone Master 0 Data In
dat_0_o 8 Out Wishbone Master 0 Data Out
we_0_o 1 Out Wishbone Master 0 Write
sel_0_i 1 In Wishbone Master 0 Select (redundant with strobe)
stb_0_i 1 In Wishbone Master 0 Strobe

ack_0_o 1 Out Wisbhone Master 0 Ack
cyc_0_i 1 In Wishbone Master 0 Cycle
adr_1_i 8 In Wishbone Master 1 Address
dat_1_i 8 In Wishbone Master 1 Data In
dat_1_o 8 Out Wishbone Master 1 Data Out
we_1_o 1 Out Wishbone Master 1 Write
sel_1_i 1 In Wishbone Master 1 Select (redundant with strobe)
stb_1_i 1 In Wishbone Master 1 Strobe
ack_1_o 1 Out Wisbhone Master 1 Ack
cyc_1_i 1 In Wishbone Master 1 Cycle
adr_o 8 Out Wishbone Address muxed
dat_o 8 Out Wishbone Data out (muxed)
dat_i 8 In Wishbone Data In (muxed)
we_o 1 Out Wishbone write (muxed)
sel_o 1 Out Wisbhone Select (muxed)
stb_o 1 Out Wishbone Strobe (muxed)
cyc_o 1 Out Wishbone Cycle (muxed)
ack_i 1 In Wishbone Ack (muxed)

WB_ARB_SM Block Diagram

ARB_SM
cyc_0_i

cyc_1_i ack_1_o

adr_0_i
dat_0_i
we_0_i
stb_0_i
cyc_0_i
sel_0_i

adr_1_i
dat_1_i
we_1_i
stb_1_i
cyc_1_i
sel_1_i

adr_o
dat_o
we_o
stb_o
cyc_o
sel_o

ack_0_o

dat_0_o

dat_1_o
dat_i

3 Microcode Control
This section discusses how the microcode control is used. The basic idea is that a programmed
response is required, consequently an agent that can interact with I2C Master over the wishbone bus is
required. The micro-word is organized to be able to control reading/writing of the bus, and has the
ability to write literals to selected addresses, write the current received data bus, and to loop on a
masked status.

The micro-code is organized as illustrated below:

Signal Name Function
mc_word[7:0] Data Out/Comparison word
mc_word[10:8] Address to I2C Master
mc_word[11] Source Select 0 = mc_word[7:0] 1=status_in
mc_word[14:13] 00 – Wishbone Write Operation

01 – Wishbone Read and Compare/Loop
10 = Wait till Interrupt
11 – Undefined

mc_word[15] Stop execution after transaction

The easiest way to illustrate it's use is to give an example:

This is the microcode loaded in the basic test bench. It achieves the sending of the status word to the
I2C slave addressed at 0x30. Note that bit 12 in the control word isn't currently defined.

wr_single(SADR1, 8'h00,8'h30); // Load the Slave address into bits 7-0
wr_single(SADR1, 8'h01,{MCRUN,MCWRT,MCWORD,TXR});

Microword 0 = 16'b1_00_X_0_011_00110000

// This operation starts the first transmission of the Address phase of the I2C protocol
wr_single(SADR1, 8'h02, STA | WRB); // Set the Start bit and Write Bit in the CTL Reg
wr_single(SADR1, 8'h03, {MCRUN,MCWRT,MCWORD,CR}); // Write to Ctl Reg -

Microword 1 = 16'b1_00_X_0_100_10010000

/ This has the affect of continually reading the status register until the ANDed condition is true,
// i.e. Bit 1 set in this case.
wr_single(SADR1, 8'h04, 8'h02); // Mask for bit 1 of the Status word
wr_single(SADR1, 8'h05, {MCRUN,MCRDC,MCWORD,SR}); // Continually read SR until mask true

Microword 2 = 16'b1_01_X_0_100_00000010

// Load the received_in bus into the I2C Master XMIT register
wr_single(SADR1, 8'h06, 8'h0); // Uses STAT_IN – so noop
wr_single(SADR1, 8'h07,{MCRUN,MCWRT,STAT_IN,TXR}); // Selects STAT_IN

Microword 3 = 16'b1_00_X_1_011_00000000

// Send the status word - and set the stop bit when done.
wr_single(SADR1, 8'h08, STO | WRB); // Set the STOP bit and Write Bit (last operation)
wr_single(SADR1, 8'h09, {MCRUN,MCWRT,MCWORD,CR});

Microword 3 = 16'b1_00_X_0_100_01010000

// This next sequence is the last in the Microcode sequence -
// The status word is polled until bit one sets. Since MCSTOP is selected, the SM will stop
// upon completion of this step.
wr_single(SADR1, 8'h0A, 8'h02); // Mask for bit 1
wr_single(SADR1, 8'h0B, {MCSTOP,MCRDC,MCWORD,SR}); // Stop operation upon completion.

Microword 3 = 16'b0_01_X_0_100_00000010

	1EPIMETHEUS FPGA/CPLD Specification
	2Functional Description
	2.1EPI Module description
	2.2OpenCores I2C Master
	2.3I2C_SLAVE (HPSDR)
	2.4EPI_CONTROL_REGS Module
	2.5STATUS_MCODE
	2.6STATUS_CTL
	2.7WB_ARB_MUX

	3Microcode Control

