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1 EPIMETHEUS FPGA/CPLD Specification

This document describes the Verilog code which is the core of the Epimetheus (EPI) CPLD 
functionality.  The board block diagram is shown below:

EPIMETHEUS Block Diagram



2 Functional Description
The main mission of the Epi CPLD is to provide programmed Outputs for the various facilities on EPI 
and to be capable of sending a message to the host processor on Ozy whenever a state change occurs on 
the 'receive_in” pins (like a button push). 

The I2C bus is used both as the programming path AND the message path.  There are two I2C ports on 
the device primarily to simplify internal tristate control.  These should be tied together on a single I2C 
bus on the EPI board.

The Verilog code for Epimetheus implements an I2C slave which translates I2C activity into Wishbone 
bus cycles.  These Wishbone transactions can target one of three slaves, the I2C Master (from 
OpenCores), the “Epi_ctl_regs” module, and the “Status_mcode” module.  The “Status_ctl” module 
serves as another Wishbone master which causes messages over the I2C master every time a signal 
changes state on the “receive_in” lines.   The “Wb_arb_mux” module serves as an arbiter between the 
two Wishbone bus masters and feeds the data bus to/from each of the three I2C slaves.

A block Diagram of the EPIMETHEUS code is illustrated below:

Epi Verilog Code Block Diagram
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This document covers all of the modules colored in Blue.  The “OpenCores I2C Master” has it's own 
documentation that can be found on the “www.opencores.org” web page.

2.1 EPI Module description

This module is the top level and incorporates several sub-modules which implement the CPLD 
functionality.  The table below illustrates the module I/Os.

Signal Name Width Direction Description
reset_n 1 In Reset (Active low)
CLK 1 In Clock input – should be 30-40Mhz
slv_sda 1 In/Out I2C Slave Serial Data
slv_scl 1 In I2C Slave Serial Clock
mstr_sda 1 In/Out I2CMaster Serial Data
mstr_scl 1 In/Out I2C Master Serial Clock
cross_point_ctl 48 Out Cross Point Control
relay_out 8 Out Relay Control
receive_in 8 In Received Inputs

oc_out 8 Out Open Collector Out

2.2 OpenCores I2C Master
The OpenCores I2C master is a wishbone slave that is employed within this design to send messages to 
the system host (Ozy) when any bit within “receive_in” changes state.  The initial conditions are set up 
by the I2C slave from Ozy, then the microcode inside “Status_mcode” that drives “Status_ctl” will 
send  a copy of the “receive_in” bus anytime a bit changes state.  

The table below illustrates the module I/O – please see the OpenCores I2C Master document for further 
design details. 

Signal Name Width Direction Description
wb_clk_i 1 In Wishbone Clock
wb_rst_i 1 In Wishbone Reset 
arst_i 1 In Asynchronouse reset
wb_adr_i 3 In Wishbone Address
wb_dat_i 8 In Wishbone Data In
wb_dat_o 8 Out Wishbone Data Out

http://www.opencores.org/
http://www.opencores.org/
http://www.opencores.org/


wb_we_i 1 In Wishbone Write
wb_stb_i 1 In Wishbone Strobe/Select
wb_cyc_i 1 In Wishbone Cycle

wb_ack_o 1 Out Wishbone Ack 
wb_inta_o 1 Out Wishbone Interrupt Out
scl_pad_i 1 In I2C Clock In
scl_pad_o 1 Out I2C Clock Out
scl_padoen_o 1 Out I2C Clock Pad Out Enable (active low)
sda_pad_i 1 In I2C Data In
sda_pad_o 1 Out I2C Data Out
sda_padoen_o 1 Out I2C Data Pad Out Enable (active low)

Please see the register description section for register bit definitions.

The define ADDRESS sets the I2C Slave address.

2.3 I2C_SLAVE (HPSDR)
This module implements an I2C slave which translates I2C transactions into Wishbone operations.

The module receives it's I2C address from the top level module (the address which it responds on the 
I2C too).  It is assumed that the I2C signals are de-glitched and that SDA occurs AFTER SCL to allow 
the STOP & START states to be determined reliably.

Signal Name Width Direction Description
rst_n 1 In reset (active low)
clk 1 In Clock
my_addr 7 In I2C Slave Address
adr_o 8 Out Wishbone Address
dat_i 8 In Wishbone Data In
dat_o 8 Out Wishbone Data Out
we_o 1 Out Wishbone Write
stb_o 1 Out Wishbone Strobe
sel_o 1 Out Wishbone Select (redundant with strobe)
cyc_o 1 Out Wishbone Cycle

ack_i 1 In Wishbone Ack 
debug 12 Out Debug bus  (not required)



scl_in 1 In I2C Clock In
sda_in 1 In I2C Data In
sda_out 1 Out I2C Data Out
sda_oe 1 Out I2C Data Pad Out Enable (active high)

I2C_SLAVE Block Diagram

The “START” detector detects the transition of SDA from high to low while the clock is high.

The “STOP” detector sets when the transition of SDA from low to high occurs while the clock is high.

The “RCV_REG” shifts in the received data when the SCL transitions from low to high. This allows it 
to capture the data transmitted over the I2C bus.

The “RCV_CNTR”  counts the number of bits that have been shifted into “RCV_REG.”
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The “COMP” function watches the received data, and when the I2C_SM is in the SM_ADDR state and 
the data compares to the “my_addr” bus, it indicates an that device has been selected.

The “Data_out” module captures the data from the Wishbone dat_i bus and stores it to be sent out over 
the I2C SDA_OUT signal through the “8:1 Mux.”

The I2C_SM follows the state diagram below:

I2C SM State Diagram
The state machine goes asynchronously to IDLE when STOP occurs. This is how it exits the READ, 
WAIT, and WRITE states nominally during burst operations. 
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The function of the state machine is to interpret multiple I2C sequences, separating them into Address 
phase which selects the target I2C device followed by either Write or Read phases. 

I2C State Machine Sequence to Write Data to the Wisbhone bus

I2C State Machine Sequence to Read Data via the Wishbone bus

The “CYC_SM” is used to cause read and write transactions on the Wishbone bus. The CYC_SM 
interprets the different points within the I2C sequences and takes appropriate action to move data to or 
from the I2Cresources across the Wishbone bus.  
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CYC_SM State Machine
Note that ALL of the signal state points mentioned above are synchronized copies of the state signals 
that exist in the I2C clock domain space. This is necessary to remove any problems with metastability.

CYC_SM state sequence following the I2C Write Transfer
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CYC_SM State sequence following the I2C Read Transfer
The “ADR_O” register captures data upon the state machine moving from ADDR to WDATA. 
“ADR_O” will increment on succeeding occurrences of ACK while in the WDATA state or RDATA 
state. This supports burst operations for both read and write sequences.

'The “DAT_O” register captures data upon the state machine moving when the state machine is in the 
WDATA state and ACK occurs.

Wishbone cycles occur when in the WDATA state and ACK occurs, in the RDATA state and the 
transfer count = 8,  or during the WT0 period to allow pre-fetch of read data.

2.4 EPI_CONTROL_REGS Module
The Epi Control Regs module implements two basic functions.  These are the Read/Write path to the 
programmable I/O pins and the detection of state change on the “received_in” pins.  The module is a 
Wishbone slave and is nominally only accessible from the I2C Slave master.

Signal Name Width Direction Description
rst_n 1 In reset (active low)
clk 1 In Clock
addr_o 8 Out Wishbone Address
dat_i 8 In Wishbone Data In
dat_o 8 Out Wishbone Data Out
we_i 1 Out Wishbone Write
sel_i 1 Out Wishbone Select (redundant with strobe)
cyc_i 1 Out Wishbone Cycle

ack_o 1 In Wishbone Ack 
go_ahead 1 Out Start status_ctl SM – a single clock pulse
cross_point_ctl 48 Out Cross Point programmable control
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relay_out 8 Out Relay programmable control
oc_out 8 Out Open Collector programmable Control
stat_in 8 Out Masked received_in
receive_in 8 In Received external bus

Write Addressable registers

Address Reg Name Description
8'h40 MASK Masks the received_in bus when bit is 0.
8'h41 RELAY Controls “relay_out[7:0]”
8'h42 OC_OUT Controls “oc_out[7:0]”
8'h43 CP0 Controls “cross_point_out[7:0]”
8'h44 CP1 Controls “cross_point_out[15:8]”
8'h45 CP2 Controls “cross_point_out[23:16]”
8'h46 CP3 Controls “cross_point_out[31:24]”
8'h47 CP4 Controls “cross_point_out[39:32]”

8'h48 CP5 Controls “cross_point_out[47:40]”

Note all read accesses receive the STAT_IN bus which is a time delayed version of the XOR output.



EPI_CTL_REGS block diagram
There are 9 separate registers that can be written too, while a read to any address returns the 
“STAT_IN” bus. 

The “receive_in” bus is ANDed with the value in the “MASK” register and delayed by one clock. The 
result of the masked value is compared to the delayed value to detect a change in state. Any change in 
state will cause the “go_ahead” pulse to occur. 
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2.5 STATUS_MCODE 
This module implements a byte addressable 16X8 memory array that is attached as a Wishbone slave to 
the internal Wishbone bus.  Bank 0 receives even addresses, while Bank1 receives odd addreses.  A 
second read port feeds the Microcode word over to the “STATUS_CTL” module. 

Signal Name Width Direction Description
rst_n 1 In reset (active low)
clk 1 In Clock
addr_i 8 Out Wishbone Address
dat_i 8 In Wishbone Data In
dat_o 8 Out Wishbone Data Out
we_i 1 Out Wishbone Write
sel_i 1 Out Wishbone Select (redundant with strobe)
cyc_i 1 Out Wishbone Cycle

ack_o 1 In Wishbone Ack 
mc_addr 3 In Microcode Address
mc_word 16 Out Microcode Data Word

Read/Write address descripton

Address Reg Name Description
8'h00 Bank0 byte 0 Microcode Word 0 – lower byte
8'h01 Bank1 byte 0 Microcode Word 0 – upper byte
8'h02 Bank0 byte 1 Microcode Word 1 – lower byte
8'h03 Bank1 byte 1 Microcode Word 1 – upper byte
8'h04 Bank0 byte 2 Microcode Word 2 – lower byte
8'h05 Bank1 byte 2 Microcode Word 2 – upper byte
8'h06 Bank0 byte 3 Microcode Word 3 – lower byte
8'h07 Bank1 byte 3 Microcode Word 3 – upper byte

8'h08 Bank0 byte 4 Microcode Word 4 – lower byte

8'h09 Bank1 byte 4 Microcode Word 4 – upper byte

8'h0A Bank0 byte 5 Microcode Word 5 – lower byte

8'h0B Bank1 byte 5 Microcode Word 5 – upper byte

8'h0C Bank0 byte 6 Microcode Word 6 – lower byte

8'h0D Bank1 byte 6 Microcode Word 6 – upper byte

8'h0E Bank0 byte 7 Microcode Word 7 – lower byte

8'h0F Bank1 byte 7 Microcode Word 7 – upper byte



STATUS Microcode store block diagram

The Wishbone bus organizes the memory into two banks, each 8 bits wide that take on even an odd 
addresses respectively on the Wishbone bus.   The second read path is addressed by mc_addr[2:0] and 
supplies the “mc_word” bus. 
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2.6 STATUS_CTL
The “STATUS_CTL” module is serves as a Wishbone master which causes I2C messages to be sent 
via the I2C Master module.  The “STATUS_CTL” receives it's micro-coded instructions from the 
“STATUS_MCODE” module via the “mc_word” bus and interprets them as to the action it's to take. 

Signal Name Width Direction Description
rst_n 1 In reset (active low)
clk 1 In Clock
addr_o 8 Out Wishbone Address
dat_i 8 In Wishbone Data In
dat_o 8 Out Wishbone Data Out
we_o 1 Out Wishbone Write
sel_o 1 Out Wishbone Select (redundant with strobe)
cyc_o 1 Out Wishbone Cycle

ack_i 1 In Wishbone Ack 
mc_addr 3 Out Microcode Address
mc_word 16 In Microcode Data Word
go_ahead 1 In Start interpreting the Microcode
stat_in 8 In Synchronized version of masked “received_in” bus

The module receives “mc_word” which controls the operation of the module.  The table below defines 
how the state machine decodes the micro-control word.

Signal Name Function 
mc_word[7:0] Data Out/Comparison word
mc_word[10:8] Address to I2C Master
mc_word[11] Source Select 0 = mc_word[7:0] 1=status_in
mc_word[14:13] 00 – Wishbone Write Operation

01 – Wishbone Read and Compare/Loop
10 = Wait till Interrupt
11 – Undefined

mc_word[15] Stop execution after transaction



This section provides a block diagram of the STAT_CTL module:

STAT_CTL Block Diagram
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STAT_CTL State Machine
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2.7 WB_ARB_MUX
This module provides arbitration services for the Wishbone masters and muxes the address bus and 
data_out buses.

Signal Name Width Direction Description
wb_clk_i 1 In Clock
wb_rst_i 1 In reset (active low)
adr_0_i 8 In Wishbone Master 0 Address
dat_0_i 8 In Wishbone Master 0 Data In
dat_0_o 8 Out Wishbone Master 0 Data Out
we_0_o 1 Out Wishbone Master 0 Write
sel_0_i 1 In Wishbone Master 0 Select (redundant with strobe)
stb_0_i 1 In Wishbone Master 0 Strobe

ack_0_o 1 Out Wisbhone Master 0 Ack 
cyc_0_i 1 In Wishbone Master 0 Cycle
adr_1_i 8 In Wishbone Master 1 Address
dat_1_i 8 In Wishbone Master 1 Data In
dat_1_o 8 Out Wishbone Master 1 Data Out
we_1_o 1 Out Wishbone Master 1 Write
sel_1_i 1 In Wishbone Master 1 Select (redundant with strobe)
stb_1_i 1 In Wishbone Master 1 Strobe
ack_1_o 1 Out Wisbhone Master 1 Ack 
cyc_1_i 1 In Wishbone Master 1 Cycle
adr_o 8 Out Wishbone Address muxed
dat_o 8 Out Wishbone Data out (muxed)
dat_i 8 In Wishbone Data In (muxed)
we_o 1 Out Wishbone write  (muxed)
sel_o 1 Out Wisbhone Select (muxed)
stb_o 1 Out Wishbone Strobe (muxed)
cyc_o 1 Out Wishbone Cycle (muxed)
ack_i 1 In Wishbone Ack (muxed)



WB_ARB_SM Block Diagram
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3 Microcode Control
This section discusses how the microcode control is used.  The basic idea is that a programmed 
response is required, consequently an agent that can interact with I2C Master over the wishbone bus is 
required. The micro-word is organized to be able to control reading/writing of the bus, and has the 
ability to write literals to selected addresses,  write the current received data bus, and to loop on a 
masked status.  

The micro-code is organized as illustrated below:

Signal Name Function 
mc_word[7:0] Data Out/Comparison word
mc_word[10:8] Address to I2C Master
mc_word[11] Source Select 0 = mc_word[7:0] 1=status_in
mc_word[14:13] 00 – Wishbone Write Operation

01 – Wishbone Read and Compare/Loop
10 = Wait till Interrupt
11 – Undefined

mc_word[15] Stop execution after transaction

The easiest way to illustrate it's use is to give an example:

This is the microcode loaded in the basic test bench. It achieves the sending of the status word to the 
I2C slave addressed at 0x30.  Note that bit 12 in the control word isn't currently defined. 

wr_single(SADR1, 8'h00,8'h30);  // Load the Slave address into bits 7-0
wr_single(SADR1, 8'h01,{MCRUN,MCWRT,MCWORD,TXR});  

Microword 0 = 16'b1_00_X_0_011_00110000

// This operation starts the first transmission of the Address phase of the I2C protocol
wr_single(SADR1, 8'h02, STA | WRB );  // Set the Start bit and Write Bit in the CTL Reg
wr_single(SADR1, 8'h03, {MCRUN,MCWRT,MCWORD,CR});  // Write to Ctl Reg - 

Microword 1 = 16'b1_00_X_0_100_10010000

/ This has the affect of continually reading the status register until the ANDed condition is true,
//  i.e. Bit 1 set in this case.
wr_single(SADR1, 8'h04, 8'h02);     // Mask for bit 1 of the Status word
wr_single(SADR1, 8'h05, {MCRUN,MCRDC,MCWORD,SR}); // Continually read SR until mask true

Microword 2 = 16'b1_01_X_0_100_00000010



// Load the received_in bus into the I2C Master XMIT register
wr_single(SADR1, 8'h06, 8'h0);  // Uses STAT_IN – so noop
wr_single(SADR1, 8'h07,{MCRUN,MCWRT,STAT_IN,TXR}); //  Selects STAT_IN

Microword 3 = 16'b1_00_X_1_011_00000000

// Send the status word - and set the stop bit when done.
wr_single(SADR1, 8'h08, STO | WRB );  // Set the STOP bit and Write Bit (last operation)
wr_single(SADR1, 8'h09, {MCRUN,MCWRT,MCWORD,CR});

Microword 3 = 16'b1_00_X_0_100_01010000

// This next sequence is the last in the Microcode sequence - 
// The status word is polled until  bit one sets.  Since MCSTOP is selected, the SM will stop 
// upon completion of this step.
wr_single(SADR1, 8'h0A, 8'h02 ); // Mask for bit 1
wr_single(SADR1, 8'h0B, {MCSTOP,MCRDC,MCWORD,SR}); // Stop operation upon completion.

Microword 3 = 16'b0_01_X_0_100_00000010
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